- 1. Prove the following statements from §1.1.1
 - (a) $z \in \mathbb{C}$ is purely imaginary if and only if $z = -\bar{z}$
 - (b) $Re(z) = \frac{z + \bar{z}}{2}$
 - (c) $\text{Im}(z) = \frac{z \bar{z}}{2i}$
 - (d) $|z|^2 = z\bar{z}$
 - (e) If $z \neq 0$, then $\frac{1}{z} = \frac{\bar{z}}{|z|^2}$.
 - (f) If $z = re^{i\theta}$, then $\bar{z} = re^{-i\theta}$.
- 2. Use Taylor Series from Calculus II to prove Euler's Formula: $e^{i\theta} = \cos \theta + i \sin(\theta)$.
- 3. Use the definition of complex multiplication to prove that if $z = re^{i\theta}$ and $w = se^{i\varphi}$ then $zw = rse^{i(\theta + \varphi)}$.
- 4. Prove the following statements from §1.1.2
 - (a) An infinite sequence of complex number $\{z_n\}$ converges to $w \in \mathbb{C}$ if and only if the sequence of real and imaginary parts of z_n converge to the real and imaginary parts of w, respectively.
 - (b) \mathbb{C} is complete.
- 5. Prove the following statements from §1.1.3
 - (a) The union of two closed sets is closed.
 - (b) The intersection of two closed sets is closed.
 - (c) A finite union of points in \mathbb{C} is closed.
- 6. Give an example of an infinite union of closed sets in $\mathbb C$ that is not a closed set.
- 7. Book Problem #5 page 25.