1. Prove the following statements from $\S 1.1 .1$
(a) $z \in \mathbb{C}$ is purely imaginary if and only if $z=-\bar{z}$
(b) $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$
(c) $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
(d) $|z|^{2}=z \bar{z}$
(e) If $z \neq 0$, then $\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}$.
(f) If $z=r e^{i \theta}$, then $\bar{z}=r e^{-i \theta}$.
2. Use Taylor Series from Calculus II to prove Euler's Formula: $e^{i \theta}=\cos \theta+i \sin (\theta)$.
3. Use the definition of complex multiplication to prove that if $z=r e^{i \theta}$ and $w=s e^{i \varphi}$ then $z w=r s e^{i(\theta+\varphi)}$.
4. Prove the following statements from $\S 1.1 .2$
(a) An infinite sequence of complex number $\left\{z_{n}\right\}$ converges to $w \in \mathbb{C}$ if and only if the sequence of real and imaginary parts of z_{n} converge to the real and imaginary parts of w, respectively.
(b) \mathbb{C} is complete.
5. Prove the following statements from §1.1.3
(a) The union of two closed sets is closed.
(b) The intersection of two closed sets is closed.
(c) A finite union of points in \mathbb{C} is closed.
6. Give an example of an infinite union of closed sets in \mathbb{C} that is not a closed set.
7. Book Problem \#5 page 25.
