1. Use the Residue Formula to show:

$$\int_{-\infty}^{\infty} \frac{1}{x^6 + 1} \ dx = \frac{2}{3}\pi$$

2. Let R be the rectangle oriented clockwise shown below. Find the integrals:

(a)
$$\int_{R} \frac{1}{z^2 - 3z + 5} dz$$

(b)
$$\int_{P} \frac{1}{z^2 + z + 1} dz$$

(a)
$$\int_{R} \frac{1}{z^2 - 3z + 5} dz$$
 (b) $\int_{R} \frac{1}{z^2 + z + 1} dz$ (c) $\int_{R} \frac{1}{z^2 - z + 1} dz$

- 3. Book problem #6
- 4. Find the number of zeroes of:
 - (a) $3e^z z$ in the closed disc $|z| \le 1$
 - (b) $\frac{1}{3}e^z z$ in the closed disc $|z| \le 1$
 - (c) $z^4 5z + 1$ in the closed anulus $1 \le |z| \le 2$
 - (d) $z^6 5z^4 + 3z^2 1$ in the closed disc $|z| \le 1$