1. Find the image of the unit circle under the mappings:
(a) $f(z)=\frac{1}{z}$
(b) $f(z)=\frac{1}{z-1}$
(c) $f(z)=\frac{1}{z-2}$
2. Find the image of the lines $x=a$ and $y=b$ under the mapping $f(z)=e^{z}=e^{x+i y} .(a, b \in \mathbb{R})$
3. What is the image of the upper-half plane under a mapping of the form

$$
f(z)=\frac{a z+b}{c z+d}
$$

when a, b, c, d are all real numbers and $a d-b c>0$?
4. Find the Möbius transformations that send
(a) $1, i,-1$ to $-1, i, 1$, respectively
(b) $-i, 0, i$ to $-0, i, 2 i$, respectively
(c) $-i, i, 2 i$ to $\infty, 0, \frac{1}{3}$, respectively
5. Prove that a Möbius Transformation has at most two fixed points. $(z \in \mathbb{C}$ such that $f(z)=z)$

